Publications

Monolayer atomic crystal molecular superlattices

Chen Wang, Qiyuan He, Udayabagya Halim, Yuanyue Liu, Enbo Zhu, Zhaoyang Lin, Hai Xiao, Xidong Duan, Ziying Feng, Rui Cheng, Nathan O Weiss, Guojun Ye, Yun-Chiao Huang, Hao Wu, Hung-Chieh Cheng, Imran Shakir, Lei Liao, Xianhui Chen, William A Goddard III, Yu Huang, Xiangfeng Duan

Nature 555, 231-236 (2018)

Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials1,2,3. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility4,5,6,7,8. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures9,10,11 but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures12,13,14, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.
UCLA, HSSEAS, Dept. of Materials Science and Engineering
410 Westwood Plaza, 3111 Engineering V
Los Angeles, CA 90095-1595
E-mail: yhuang@seas.ucla.edu Tel:(310)794-9589